Généralités sur les suites -----

Exercice 1:

On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{4}u_n + 3$.

- 1) Tracer dans un repère (O, \vec{i}, \vec{j}) avec une unité graphique de 2 cm les premiers termes de cette suite.
- 2) Conjecturer les variations et la limite de cette suite.

Exercice 2:

On considère la suite (u_n) définie par : $u_0 = 0.5$ et $u_{n+1} = u_n^2$ pour $n \in \mathbb{N}$.

- 1) Tracer dans un repère (O, \vec{i}, \vec{j}) avec une unité graphique de 10 cm les premiers termes de cette suite.
- 2) Conjecturer les variations et la limite de cette suite.

Exercice 3:

On considère la suite (u_n) définie pour $n \in \mathbb{N}$ par : $u_0 = 0$ et $u_{n+1} = \frac{5u_n - 3}{3u_n - 1}$.

On admet que la condition $u_n \neq 1/3$ est satisfaite sinon la suite ne serait plus définie à partir d'un certain rang.

- 1) Montrer que si un terme est égal à 1 alors le terme précédent aussi. En déduire qu'aucun terme de la suite ne peut être égal à 1.
- 2) On considère alors la suite auxiliaire (v_n) définie pour $n \in \mathbb{N}$ par $v_n = \frac{u_n + 1}{u_n 1}$.
 - a) Montrer que (v_n) est une suite arithmétique.
 - b) Exprimer alors v_n puis u_n en fonction de n.

Exercice 4:

On considère la suite (u_n) définie pour $n \in \mathbb{N}$ par : $u_0 = 2$ et $u_{n+1} = u_n + \left(\frac{2}{3}\right)^n$

- 1) Calculer u_1 , u_2 et u_3 . La suite est-elle géométrique ?
- 2) On considère alors la suite (v_n) définie pour $n \in \mathbb{N}$ par $v_n = u_{n+1} u_n$. Montrer (v_n) est géométrique.
- 3) On pose pour $n \in \mathbb{N}$, $S_n = v_0 + v_1 + v_2 + ... + v_n$.
 - a) Exprimer S_n en fonction de n.
 - b) Montrer que $S_n = u_{n+1} u_0$. En déduire l'expression de u_{n+1} puis celle de u_n en fonction de n.

Démonstration par récurrence

Exercice 5: Montrer par récurrence que pout tout $n \in \mathbb{N}$, $n^3 - n$ est un multiple de 3.

Exercice 6: Montrer par récurrence sur n que pout tout $n \in \mathbb{N}$ et $x \in \mathbb{R}^+$, on a $(1+x)^n \ge 1+nx$.

Exercice 7: Montrer par récurrence que $1^2 + 2^2 + 3^2 \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ pour tout entier $n \ge 1$.

Exercice 8:

On considère la suite (u_n) définie pour $n \in \mathbb{N}$ par : $u_0 = 1$ et $u_{n+1} = \frac{n+1}{3}u_n$ pour $n \in \mathbb{N}$.

- 1) Calculer quelques premiers termes et conjecturer une formule explicite de la suite.
- 2) Démontrer cette conjecture par récurrence.

Variation et limite -----

Exercice 9:

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = ne^{-n}$.

- 1) On considère la fonction f définie sur \mathbb{R} par $f: x \mapsto xe^{-x}$.
 - a) Etudier ses limites.
 - b) Etudier ses variations.
- 2) En déduire que la suite (u_n) est décroissante à partir d'un certain rang.
- 3) Déterminer la limite de la suite (u_n) .

Exercice 10:

On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \frac{1}{4}u_n + 3$.

- 1) Rappeler les conjectures faites à l'exercice 1.
- 2) Etudier les variations de (u_n) .
- 3) On considère la suite auxiliaire (v_n) définie par $v_n = u_n 4$.
 - a) Montrer que la suite (v_n) est géométrique.
 - b) Déterminer alors la limite de (v_n) .
 - c) Exprimer u_n en fonction de v_n . En déduire la convergence de (u_n) .

Suites monotones bornées ------

Exercice 12:

Démontrer les conjectures de l'exercice 2.

Exercice 13: Vrai-Faux

Les propositions suivantes sont-elles vraies ou fausses ? Justifier.

- 1) Toute suite convergente est bornée.
- 2) Toute suite croissante non majorée diverge vers $+\infty$.
- 3) Comme pour tout $n \in \mathbb{N}$, on a $\sin n \le 1$, la suite de terme général $\sin n$ est convergente.
- 4) Toute suite convergente et majorée est croissante.
- 5) Toute suite croissante est minorée.

Exercice 14:

On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \sin u_n$.

- 1) A l'aide de la calculatrice, conjecturer le comportement de cette suite.
- 2) Démontrer que, pour tout entier naturel n, on a $u_n \in [0,1]$.
- 3) Démontrer que la suite (u_n) est strictement décroissante.
- 4) Démontrer que la suite est convergente. Déterminer sa limite.

Exercice 15:

On considère la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = \sqrt{u_n + 12}$.

- 1) Démontrer que, pour tout entier naturel n, on a $0 \le u_n \le u_{n+1} \le 4$.
- 2) En déduire que la suite (u_n) est convergente.
- 3) Déterminer sa limite.

Exercice 16: (BAC)

Soit *a* un nombre réel tel que $-1 < \alpha < 0$.

On considère la suite (u_n) définie par $u_0 = \alpha$, et pour tout entier naturel n, $u_{n+1} = u_n^2 + u_n$.

- 1) Soit *h* la fonction définie sur \mathbb{R} par $h(x) = x^2 + x$.
 - a) Etudier le sens de variation de la fonction h.
 - b) Montrer que pour tout $x \in]-1;0[$ on a aussi $h(x) \in]-1;0[$.
 - c) En déduire que pour tout entier naturel n on a : $-1 < u_n < 0$.
- 2) Etudier les variations de la suite (u_n) .
- 3) Montrer que la suite (u_n) est convergente. Déterminer sa limite.

Exercice 17: Suites de Héron

Soient $a \in \mathbb{R}^{+*}$, f la fonction définie sur \mathbb{R}^{*} par $f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$

et la suite (u_n) définie par $\begin{cases} u_0 = E(\sqrt{a}) + 1 \\ u_{n+1} = f(u_n) \end{cases}$ pour $n \in \mathbb{N}$.

On considère la suite

- 1) Etudier les variations de f.
- 2) Démontrer par récurrence que pour tout $n \in \mathbb{N}$, on a $\sqrt{a} < u_{n+1} < u_n \le u_0$.
- 3) En déduire que la suite est convergente.
- 4) Déterminer sa limite.
- 5) Pour a = 2, 3 et 5, comparer u_3 et \sqrt{a} . Que pensez-vous de la rapidité de convergence des suites d'Héron?

Suites adjacentes

Exercice 18:

Soient (u_n) et (v_n) deux suites définies pour $n \in \mathbb{N}$ par $u_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$ et $v_n = u_n + \frac{1}{n}$.

Montrer que les deux suites sont adjacentes.

En déduire qu'elles convergent.

Exercice 19:

Soient (u_n) et (v_n) deux suites définies par $u_1 = 1$, $v_1 = 12$, $u_{n+1} = \frac{u_n + 2v_n}{3}$ et $v_{n+1} = \frac{u_n + 3v_n}{4}$ pour tout $n \in \mathbb{N}^*$.

- 1) Calculer u_2 , v_2 , u_3 et v_3 .
- 2) On pose $w_n = v_n u_n$.

Démontrer que la suite (w_n) est géométrique et préciser sa limite.

3) Démontrer que les suites (u_n) et (v_n) sont adjacentes.

Que peut-on en déduire ?

4) On pose alors $t_n = 3u_n + 8v_n$.

Démontrer que la suite (t_n) est constante. En déduire la limite des suites (u_n) et (v_n) .

Exercice 20 : Moyennes arithmétiques et géométriques.

Soient deux réels 0 < a < b.

On définit deux suites (a_n) et (b_n) par $a_0 = a$, $b_0 = b$, $a_{n+1} = \sqrt{a_n b_n}$ et $b_{n+1} = \frac{a_n + b_n}{2}$.

- 1) Montrer par récurrence que $a \le a_n \le b_n \le b$ pour tout $n \in \mathbb{N}$.
- 2) Montrer par récurrence que les deux suites sont monotones.
- 3) Montrer que En remarquant que $\sqrt{a_n b_n} \ge a_n$, montrer que $b_{n+1} a_{n+1} \le \frac{b_n a_n}{2}$ pour tout $n \in \mathbb{N}$. En déduire que la suite différence tend vers 0.
- 4) En déduire que les suites (a_n) et (b_n) sont convergentes.

Exercice 21: (BAC)

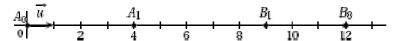
- 1) La suite u est définie par : $u_0 = 2$ et $u_{n+1} = \frac{1}{3}u_n + \frac{23}{27}$ pour tout entier naturel n.
 - a) Représenter dans un repère adapté la droite d'équation $y = \frac{x}{3} + \frac{23}{27}$ et le point A de coordonnées (2 ; 0). Construire sur l'axe des abscisses les quatre premiers termes de la suite (u_n) .
 - b) Démontrer que si la suite (u_n) est convergente alors sa limite est $l = \frac{23}{18}$.
 - c) Démontrer que pour tout entier naturel n on a : $u_n \ge \frac{23}{18}$.
 - d) Etudier la monotonie de la suite (u_n) et donner sa limite.
- 2) Soit *n* un entier naturel supérieur ou égal à 1.
 - a) Démontrer que : $\sum_{k=2}^{n+1} \frac{1}{10^k} = \frac{1}{90} \left(1 \frac{1}{10^n} \right)$.
 - b) On considère alors la suite (v_n) est définie par $v_n = 1,277777...7$ avec n décimales consécutives égales à 7. Ainsi $v_0 = 1,2, \quad v_1 = 1,27$ et $v_2 = 1,277$. En utilisant le a) démontrer que la limite de la suite v est un nombre rationnel r

(c'est-à-dire le quotient de deux entiers). 3) La suite (u_n) et la suite (v_n) sont-elles adjacentes? Justifier.

Exercice 22: (BAC)

Partie A

On considère les suites de points A_n et B_n définies pour tout entier naturel n de la manière suivante : sur un axe orienté (O,\vec{u}) donné ci-dessous, le point A_0 a pour abscisse 0 et le point B_0 a pour abscisse 12.



Le point A_{n+1} est le barycentre des points $(A_n, 2)$ et $(B_n, 1)$.

Lle point B_{n+1} est le barycentre des points pondérés $(A_n,1)$ et $(B_n,3)$.

- 1) Sur le graphique placer les points A_2 , B_2 .
- 2) On définit les suites (a_n) et (b_n) des abscisses respectives des points A_n et B_n . Montrer que : $a_{n+1} = \frac{2a_n + b_n}{3}$. On admet de même que $b_{n+1} = \frac{a_n + 3b_n}{4}$.

Partie B

- 1) On considère la suite (u_n) définie, pour tout entier naturel n, par $u_n = b_n a_n$.
 - a) Montrer que la suite (u_n) est géométrique. En préciser la raison.
 - b) Donner l'expression de u_n en fonction de l'entier naturel n.
 - c) Déterminer la limite de (u_n) . Interpréter géométriquement ce résultat.
- 2) a) Démontrer que la suite (an) est croissante (on pourra utiliser le signe de un).
 - b) Etudier les variations de la suite (b_n) .
- 3) Que peut-on déduire des résultats précédents quand à la convergence des suites (a_n) et (b_n) ?

Partie C

- 1) On considère la suite (v_n) définie, pour tout entier naturel n, par $v_n = 3a_n + 4b_n$. Montrer que la suite (v_n) est constante.
- 2) Déterminer la limite des suites (a_n) et (b_n) .

Exercice 23 : Séries de Riemann

On appelle séries de Riemann les suites définies pour $n \in \mathbb{N}^*$

par
$$u_n = \sum_{k=1}^n \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}$$
, p étant un entier fixé.

- 1) Montrer que les séries de Riemann sont croissantes.
- 2) Cas p = 1 (Série harmonique)
 - a) Démontrer que $u_{2n} \ge \frac{1}{2} + u_n$ pour tout $n \in \mathbb{N}^*$.
 - b) En déduire que la série harmonique (u_n) est divergente.
- 3) Cas p = 2.
 - a) Montrer que les suites (u_n) et (v_n) définies par $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{1}{n}$ pour $n \in \mathbb{N}^*$ sont adjacentes.
 - b) En déduire que la suite (u_n) est convergente.

- 4) Cas $p \ge 3$. On considère la suite (w_n) définie par $w_n = \sum_{k=1}^n \frac{1}{k^p}$.
 - Justifier que $w_n \le u_n$ pour $n \in \mathbb{N}^*$ où (u_n) est la suite avec p = 2.
 - En déduire que les suites de Riemann (w_n) convergent.