I) Limites

1) <u>Limites à l'infini</u>

a) Limite finie

Définition:

Etant donnée une fonction f et un réel α , on dira quelle

- tend vers α quand x tend vers $+\infty$ si pour tout $\varepsilon > 0$, on a $f(x) \in]\alpha - \varepsilon$; $\alpha + \varepsilon[$ "pour x assez grand".
- tend vers α quand x tend vers $-\infty$ si pour tout $\varepsilon > 0$, on a $f(-x) \in]\alpha \varepsilon$; $\alpha + \varepsilon[$ "pour x assez grand".

Remarques:

On note alors $\lim_{x \to +\infty} f(x) = \alpha$ ou $\lim_{x \to -\infty} f(x) = \alpha$.

On dit alors que la droite d'équation $y = \alpha$ est asymptote horizontale à la courbe de f en $+\infty$ ou $-\infty$.

Exemple: Montrons que :
$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

Soit
$$\varepsilon > 0$$
. On a: $\frac{1}{x} \in \left] - \varepsilon; \varepsilon \right[\Leftrightarrow -\varepsilon < \frac{1}{x} < \varepsilon \Leftrightarrow x > \frac{1}{\varepsilon} \text{ ou } x < -\frac{1}{\varepsilon} \right]$

Il suffit donc que $x > \frac{1}{\varepsilon}$, c'est à dire que x soit "suffisamment grand" pour que $\frac{1}{x} \in]-\varepsilon; \varepsilon[$.

On a donc $\lim_{x \to +\infty} \frac{1}{x} = 0$.

b) <u>Limite infinie</u>

Définitions:

Etant donnée une fonction f, on dira quelle

- tend vers $+\infty$ quand x tend vers $+\infty$ si pour tout M > 0, on a M < f(x) "pour x assez grand".
- tend vers $+\infty$ quand x tend vers $-\infty$ si pour tout M > 0, on a f(x) < -M "pour x assez grand".
- tend vers $-\infty$ quand x tend vers $-\infty$ si pour tout M > 0, on a M < f(-x) "pour x assez grand".
- tend vers $-\infty$ quand x tend vers $-\infty$ si pour tout M > 0, on a f(-x) < -M "pour x assez grand"

Exemple: Montrons que : $\lim_{x \to +\infty} \sqrt{x} = +\infty$

Soit M > 0. On a: $\forall x \in \mathbb{R}^+$, $\sqrt{x} > M \Leftrightarrow x > M^2$

Il suffit donc que $x > M^2$, c'est à dire que x soit "suffisamment grand" pour que $\sqrt{x} > M$.

On a donc $\lim_{x \to +\infty} \sqrt{x} = +\infty$.

A retenir:

On dit que x tend vers l'infini quand x devient « très grand ».

On dira que x tend vers zéro quand x devient « très petit ».

Exercices 31 et 34 page 88

Ex 31	Somme et produit par un réel de imites en l'infini
Ex 34	Donner les asymptotes horizontales à partir des limites à l'infini

2) Limites au bord d'une valeur interdite

a) Une évidence

Propriété:

Si f est une fonction dérivable au voisinage de x_0 , alors $\lim_{x \to x_0} f(x) = f(x_0)$.

Remarque : Cette propriété est en fait celle des fonctions continues que l'on verra par la suite.

Exemple: $\lim_{x\to 2} (x^2-3) = 2^2-3 = 4-3 = 1$ car une fonction polynôme est dérivable sur \mathbb{R} .

b) Limites infinies

Définitions:

Etant donnée une fonction f et un réel x_0 , on dira quelle

- tend vers $+\infty$ quand x tend vers x_0 à droite si pour tout M > 0, on a M < f(x) "pour x proche de x_0 , $x > x_0$ ".
- tend vers $+\infty$ quand x tend vers x_0 à gauche si pour tout M > 0, on a M < f(x) "pour x proche de x_0 , $x < x_0$ ".
- tend vers $-\infty$ quand x tend vers x_0 à droite si pour tout M > 0, on a f(x) < -M "pour x proche de $x_0, x > x_0$ ".
- tend vers $-\infty$ quand x tend vers x_0 à gauche si pour tout M > 0, on a f(x) < -M "pour x proche de x_0 , $x < x_0$ ".

Remarques:

On note
$$\lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = +\infty$$
 $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = +\infty$ $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = -\infty$ $\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = -\infty$

Quand
$$\lim_{\substack{x \to x_0 \\ x > x_0}} f(x) = \lim_{\substack{x \to x_0 \\ x < x_0}} f(x) = +\infty$$
, on écrit juste $\lim_{x \to x_0} f(x)$

On dit alors que la droite d'équation $x = x_0$ est asymptote verticale à la courbe.

Exemple: Montrons que : $\lim_{\substack{x\to 0\\x>0}} \frac{1}{x} = +\infty$

Soit
$$M > 0$$
. On a: $\frac{1}{x} > M \Leftrightarrow x < \frac{1}{M}$ et $x > 0$.

Il suffit donc que $x > \frac{1}{M}$, c'est à dire que x soit "proche de 0", c'est à dire très petit, pour que $\frac{1}{x} > M$.

On a donc
$$\lim_{\substack{x\to 0\\x>0}} \frac{1}{x} = +\infty$$
.

Attention!!

Ce n'est pas parce que la valeur x_0 est une valeur interdite pour la fonction que sa courbe présente une asymptote verticale en x_0 . Il faut, en plus, montrer que les limites en x_0 sont infinies.

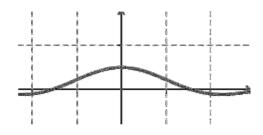
<u>Contre-exemple</u>:

La fonction f définie par $f(x) = \frac{\sin x}{x}$.

Cette fonction n'est évidemment pas définie en 0.

Et sa courbe ne présente pas d'asymptote.

En effet, nous montrerons dans la suite du cours que les limites en 0 ne sont pas infinies, mais égales à 1.



Exercices 33, 35, 36, 37, 38, 42, 46 et 53 pages 88 à 90

Excitice	terees be, be, be, be, in the et be pages of a ye			
Ex 33	Déterminer des limites au bord de la valeur interdite			
Ex 35	Déterminer l'équation de l'asymptote horizontale, la limite étant donnée			
Ex 36	Déterminer les asymptotes, les limites au bord de l'ensemble de définition étant données			
Ex 37	Lire les limites sur la calculatrice, se méfier des apparences			
Ex 38	Déterminer graphiquement les limites et les asymptotes			
Ex 42	Déterminer les limites et les asymptotes à partir d'un tableau de variations			
Ex 46	Calculer les limites et les asymptotes à partir d'une expression algébrique			
Ex 53	Associer à chaque expression algébrique sa courbe			

3) Théorèmes de comparaison

Théorème des gendarmes:

On désigne par λ un réel x_0 ou éventuellement $+\infty$ ou $-\infty$ et $\alpha \in \mathbb{R}$. On se donne trois fonctions u,v et f définies pour "x voisin de λ " et vérifiant dans ce cas : $u(x) \le f(x) \le v(x)$.

Si
$$\lim_{x \to \lambda} u(x) = \lim_{x \to \lambda} v(x) = \alpha$$
 alors $\lim_{x \to \lambda} f(x) = \alpha$.

Remarque:

L'expression « x voisin de λ » signifie que : $\begin{cases} x & \text{ou} - x \text{ est très grand si } \lambda = +\infty \text{ ou } -\infty \\ x & \text{est très proche de } x_0 \text{ si } \lambda = x_0. \end{cases}$

Démonstration (ROC)

On fait, par exemple, la démonstration quand $\lambda = +\infty$

Soit M > 0.

Comme $\lim_{x \to +\infty} u(x) = \alpha$, on a $u(x) \in]\alpha - \varepsilon; \alpha + \varepsilon[$ pour "x assez grand"

Comme $\lim_{x \to +\infty} v(x) = \alpha$, on a $v(x) \in]\alpha - \varepsilon; \alpha + \varepsilon[$ pour "x assez grand"

Comme $u(x) \le f(x) \le v(x)$, on a aussi : $f(x) \in]\alpha - \varepsilon; \alpha + \varepsilon[$ pour "x assez grand" element $f(x) = \alpha$

alors $\lim_{x \to +\infty} f(x) = \alpha$.

Exemple d'application : $\lim_{x \to +\infty} \frac{\sin x}{x}$

On sait que $-1 \le \sin x \le 1$. On en déduit que, $\forall x \in \mathbb{R}^{+*}, -\frac{1}{x} \le \frac{\sin(x)}{x} \le \frac{1}{x}$.

On a vu que $\lim_{x \to +\infty} -\frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$, on en déuit que $\lim_{x \to +\infty} \frac{\sin(x)}{x} = 0$.

Chapitre 2 « Fonctions : limites, continuité et dérivabilité »

Page 4

Théorème du gendarme:

Terminale S

On désigne par λ un réel x_0 ou éventuellement $+\infty$ ou $-\infty$.

On se donne trois fonctions u, v et f définies pour "x voisin de α ".

Si
$$\lim_{x \to \lambda} u(x) = +\infty$$
 et si $u(x) \le f(x)$ alors $\lim_{x \to \lambda} f(x) = +\infty$,

Si
$$\lim_{x \to \lambda} u(x) = -\infty$$
 et si $f(x) \le u(x)$ alors $\lim_{x \to \lambda} f(x) = -\infty$.

<u>Démonstration</u>: Il suffit d'appliquer la définition.

Exemple d'application : Montrer que $\lim_{x \to +\infty} \sqrt{x} (2 + \sin(x)) = +\infty$

On sait que $\forall x \in \mathbb{R}, -1 \le \sin x \le 1$.

On en déduit que, $\forall x \in \mathbb{R}, 1 \le 2 + \sin(x)$ et que $\forall x \in \mathbb{R}^+, \sqrt{x} \le \sqrt{x} (2 + \sin(x))$

On a vu que $\lim_{x \to +\infty} \sqrt{x} = +\infty$, on en déuit que $\lim_{x \to +\infty} x(2 + \sin(x)) = +\infty$.

Ex 72, 74 page 93

Ex 72 Déterminer graphiquement les limites et utiliser le théorème des gendarmes	
Ex 74	Déterminer une limite en encadrant le cosinus

4) Calculs de limites

a) Limites et opérations sur les fonctions

Comme pour les limites de suite, on peut obtenir la limite d'une fonction obtenue à partir d'autres fonctions en faisant des « opérations » sur les limites :

Si α désigne une limite réelle (finie) :

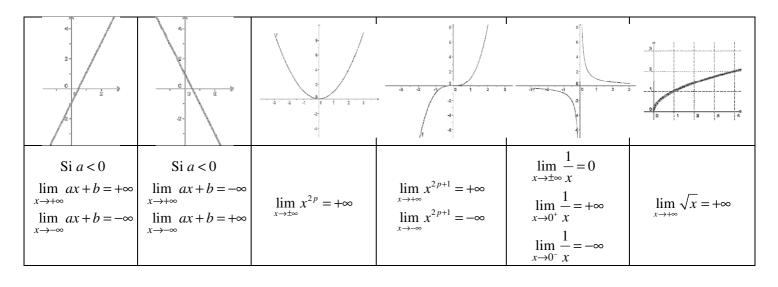
Somme :	$\alpha + (+\infty) = +\infty$	$\alpha + (-\infty) = -\infty$	$(+\infty)+(+\infty)=+\infty$	$\left(-\infty\right) + \left(-\infty\right) = -\infty$	$(+\infty)+(-\infty)=\mathbf{FI}$
Produit :	$\alpha \times (\pm \infty) = \pm \infty$ règle des signes	$(\pm \infty) \times (\pm \infty) = \pm \infty$ règle des signes	$0\times (\pm\infty) = \mathbf{FI}$		
Quotient :	$\frac{\alpha}{\pm \infty} = \frac{0}{\pm \infty} = 0$	$\frac{\pm \infty}{\alpha} = \pm \infty$ règle des signes	$\frac{\alpha}{0^{\pm}} = \frac{\pm \infty}{0^{\pm}} = \pm \infty$ règle des signes	$\frac{\pm \infty}{\pm \infty} = \mathbf{FI}$	$\frac{0}{0} = \mathbf{FI}$

FI est l'abréviation de "forme indéterminée".

Cela signifie que l'on ne peut pas conclure dans le cas général et qu'il faut faire une étude plus fine.

b) Limite des fonctions usuelles

Fonction affine	Fonction affine	Fonction puissance	Fonction puissance	Fonction inverse	Fonction racine
ax + b	ax + b	x^{2p} , avec $p \in \mathbb{N}$,	x^{2p+1} , avec $p \in \mathbb{N}$,	$\frac{1}{-}$, sur \mathbb{R}^*	_
avec $a > 0$	avec $a > 0$	$ex: x^2, x^4, x^6$	$ex : x^1 = x, x^3, x^5$	$\frac{-}{x}$, sur \mathbb{R}	\sqrt{x} , sur \mathbb{R}^+



<u>Démonstration</u>:

On a déjà montré que $\lim_{x \to +\infty} \frac{1}{x} = 0$ $\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$.

Comme la fonction inverse est impaire, on en déduit que $\lim_{x\to-\infty} \frac{1}{x} = 0$ $\lim_{x\to0} \frac{1}{x} = -\infty$

On a déjà montré que $\lim_{x \to +\infty} \sqrt{x} = 0$.

Comme $\forall x \in \mathbb{R}^+, \sqrt{x} \le x^p$ pour tout entier naturel p > 0, d'après le théorème du gendarme, $\lim_{x \to \infty} x^p = +\infty$.

En utilisant la parité des fonctions x^p , on obtient que $\lim_{n \to \infty} x^p = -\infty$ si p est impair et $+\infty$ sinon.

Pour les fonctions affines, i l'suffit d'utiliser les opérations sur les limites.

Ex 49, 50, 52

	,			
Ex 49	Déterminer des limites en l'infini en utilisant les opérations (sans FI)			
Ex 50	Déterminer des limites en l'infini en utilisant les opérations (sans FI)			
Ex 52	Déterminer les limites au bord d'une valeur interdite en utilisant les opérations (sans FI)			

c) Formes indéterminées : limites infinies des polynômes et fonctions rationnelles

Exemple avec un polynôme:

On cherche à déterminer la limite de $x^2 + x$ en $-\infty$.

On a: $\lim_{x \to -\infty} x^2 = +\infty$ et $\lim_{x \to -\infty} x = -\infty$ donc d'après le tableau c'est une FI.

Pour lever l'indétermination, il faut travailler plus finement.

On met x^2 en facteur: $x^2 + x = x^2 \times \left(1 + \frac{1}{x}\right)$ si x est non nul (ce qui est le cas quand x tend vers $+\infty$)

$$\lim_{x \to +\infty} x^2 = +\infty \text{ et } \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right) = 1 \text{ donc } \lim_{x \to +\infty} \left(x^2 + x \right) = +\infty$$

Comme on rencontre très souvent ce genre de situation, on peut utiliser un théorème général :

Théorème:

La limite en $\pm \infty$ d'un polynôme est égale à la limite en $\pm \infty$ de son monôme de plus haut degré

Exemples d'application (et de rédaction):

$$\lim_{x \to \infty} (x^3 + x^2 + 3) = \lim_{x \to \infty} x^3 = -\infty \quad \text{ou} \quad \lim_{x \to \infty} (x^4 + x^3 + 3) = \lim_{x \to \infty} x^4 = +\infty$$

Exemple avec une fonction rationnelle:

On cherche à déterminer la limite de $\frac{x^2-3}{2x+1}$ en $+\infty$.

On a $\lim_{x \to +\infty} (x^2 - 3) = +\infty$ et $\lim_{x \to +\infty} (2x + 1) = +\infty$ donc d'après le tableau c'est une **FI**.

Pour lever l'indétermination, il faut travailler plus finement. On met respectivement x et x^2 en facteur :

$$x^2 - 3 = x^2 \times \left(1 - \frac{3}{x^2}\right)$$
 et $2x + 1 = x\left(2 + \frac{1}{x}\right)$ si x est non nul (ce qui est le cas quand x tend vers $+\infty$)

Alors
$$\frac{x^2 - 3}{2x + 1} = \frac{x^2 \left(1 - \frac{3}{x^2}\right)}{x \left(2 + \frac{1}{x}\right)} = x \times \frac{1 - \frac{3}{x^2}}{2 + \frac{1}{x}}$$
. Et $\lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to +\infty} \left(\frac{1 - \frac{3}{x^2}}{2 + \frac{1}{x}}\right) = \frac{1}{2}$ donc $\lim_{x \to +\infty} \frac{x^2 - 3}{2x + 1} = +\infty$.

Comme on rencontre très souvent ce genre de situation, on peut utiliser un théorème général :

Théorème:

La limite en ±∞ d'une fonction rationnelle est égale

à la limite en ±∞ du rapport de ses monômes de plus haut degré

Exemples d'application (et de rédaction)

$$\lim_{x \to -\infty} \frac{x^3 + x^2 + 3}{2x^2 + 5} = \lim_{x \to -\infty} \frac{x^3}{2x^2} = \lim_{x \to -\infty} \frac{x}{2} = -\infty \text{ et } \lim_{x \to +\infty} \frac{x^2 + 3}{x^3 + 4} = \lim_{x \to +\infty} \frac{x^2}{x^3} = \lim_{x \to +\infty} \frac{1}{x} = 0$$

Ex 55, 57, 60 et 117 (125 TICE)

Ex 55	Lever l'indétermination pour un polynôme			
Ex 57	Lever l'indétermination pour une fonction rationnelle			
Ex 60	Lever l'indétermination avec des racines carrées			
Ex 117	Retrouver une expression à partir des limites et de valeurs de la dérivée			
Ex 125	Résolution numérique d'une équation par la méthode de la sécante (tableur)			
Page 108	Résolution numérique d'une équation par la méthode de Newton-Raphson (tableur)			

II) Continuité

1) Définition

Définition:

Soient f une fonction définie sur un intervalle I de \mathbb{R} et $a \in I$.

On dit que f est continue en a si $\lim_{x \to a} f(x) = f(a)$.

On dit que f est continue sur I si elle est continue en tout point de I.

<u>Graphiquement</u>, cela signifie que sa représentation graphique ne présente aucun point de rupture : on peut la tracer sans lever le crayon.

Remarque:

Dans un tableau de variations, les flèches indiquent la continuité de la fonction sur les intervalles considérés.

Ex 80, 81 et 83

Ex 80 Voir la continuité sur une courbe		
Ex 81	Etudier la continuité de fonctions définies par morceaux	
Ex 83	Déterminer la continuité de fonctions définies par morceaux	

2) Cas des fonctions dérivables

Propriété:

Une fonction dérivable sur un intervalle est aussi continue sur cet intervalle.

Démonstration:

Notons *I* l'intervalle. On se donne $x \in I$ et $h \neq 0$ tel $x + h \in I$.

$$f(x+h)-f(x) = \frac{f(x+h)-f(x)}{h} \times h.$$

Comme f est dérivable sur I, $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h} = f'(x)$.

On en déduit que $\lim_{h\to 0} f(x+h) - f(x) = f'(x) \times 0 = 0$. La fonction f est donc continue en tout $x \in I$.

Application:

Propriété:

Les fonctions usuelles sont continues sur tout intervalle contenu dans leur ensemble de définition.

Démonstration: A part la fonction "racine", elles sont toutes dérivables sur leur ensemble de définition.

Attention:

La fonction inverse n'est pas continue sur \mathbb{R}^* mais sur tout intervalle contenu dans \mathbb{R}^* .

A retenir: La réciproque est fausse !!!

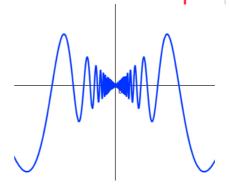
Deux exemples de fonctions continues et non dérivable en 0

La fonction « racine » est continue mais pas dérivable en 0.

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = x \times \sin\left(\frac{1}{x}\right)$$
 si $x \neq 0$ et $f(0) = 0$

- 1) La fonction f est-elle continue sur \mathbb{R} ?
- 2) La fonction f est-elle dérivable sur \mathbb{R} ?



Exemple de fonction non continue:

On considère la fonction **Partie Entière**, notée E définie sur \mathbb{R} , à valeurs dans \mathbb{Z} .

Elle fait correspondre à $x \in \mathbb{R}$ le plus grand entier relatif inférieur ou égal à x, noté E(x).

Par conséquent, $E(x) = n \Leftrightarrow n \leq x < n+1$.

Exemples: E(4) = 4, E(6,2) = 6, E(-2) = -2 et E(-4,3) = -5.

La fonction partie entière est continue sur tout intervalle de la forme [n, n+1] mais en aucun entier n.

3) Théorème des valeurs intermédiaires

Théorème:

Soit f une fonction définie et continue sur un intervalle [a;b] de \mathbb{R} .

Pour tout réel k compris entre f(a) et f(b),

il existe au moins un réel $c \in [a,b]$ tel que f(c) = k.

Utilité:

Ce théorème permet de prouver l'existence d'une (ou plusieurs) solutions d'une équation.

Il **ne permet pas de répondre** à une question du type : « Résoudre f(x) = 2 »

Mais à une question du type : « Prouver que l'équation f(x) = 2 admet solution dans [-2;10]. »

Application:

Localiser une solution « non calculable » pour éventuellement en déterminer une valeur approchée. Il existe diverses méthodes d'approximation d'une solution : par balayage (tableur) ou par dichotomie

Utilisation de la calculatrice.

Théorème : Extension à \mathbb{R}

Soit f une fonction définie et continue sur \mathbb{R} .

Si f admet des limites en $+\infty$ et en $-\infty$, alors pour tout réel k strictement compris entre $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$,

il existe au moins un réel $c \in \mathbb{R}$ tel que f(c) = k.

Démonstration:

Supposons pour simplifier que $\lim_{x \to -\infty} f(x) < \lim_{x \to +\infty} f(x)$

Si $\lim_{x \to \infty} f(x) = +\infty$, il existe un réel b tel que f(b) > k.

Si $\lim_{x\to +\infty} f(x) = \alpha$, comme $k \le \alpha$ il existe un réel b tel que f(b) > k.

De la même façon, on montrerait l'existence d'un réel a tel que f(a) > k.

On applique alors le théorème précédent pour obtenir le résultat.

Application:

Théorème fondamental ne l'analyse :

Tout polynôme de degré impair admet au moins une racine réelle.

<u>Démonstration</u> (ROC).

Existence TVI en utilisant l'existence d'une valeur positive et d'une valeur négative, les limites étant infinies et de signes contraires.

Corollaire:

Si f est une fonction est continue strictement monotone sur un intervalle [a,b], alors pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans l'intervalle [a,b].

<u>Démonstration</u> (ROC)

Existence : TVI Unicité : monotonie

Ex 84, 87, 93 et 95

Ex 84 Appliquer le TVI avec une expression numérique sur un intervalle borné				
Ex 87	Appliquer le corollaire à partir d'un tableau de variation sur un intervalle borné			
Ex 93	Appliquer le corollaire avec une expression sur R et donner une valeur approchée			
Ex 95	Appliquer le corollaire avec une expression sur R et donner une valeur approchée			

4) Limite de la composée de deux fonctions

On désigne par λ , μ et φ trois réels ou éventuellement $+\infty$ ou $-\infty$.

Soit f une fonction définie et continue sur un intervalle J "contenant μ ".

Soit u une fonction définie sur un intervalle I "contenant λ " et telle que $\forall x \in I$, $u(x) \in J$.

Si
$$\begin{cases} \lim_{x \to \lambda} u(x) = \mu \\ \lim_{u \to \mu} f(u) = \varphi \end{cases}$$
 alors
$$\lim_{x \to \lambda} f(u(x)) = 0$$

<u>Démonstration</u>: Admis.

Exemple: Déterminons

Ex 61,62,64 et 65

Ex 61	Ecrire l'expression de la composée et calculer les limites
Ex 62	Ecrire l'expression de la composée et calculer les limites
Ex 64	Calculer les limites de la composée

III) Fonctions trigonométriques

1) Périodicité, parité

Par définition, les fonctions sinus et cosinus sont définies sur \mathbb{R} et périodique de période 2π .

On a donc
$$|\forall x \in \mathbb{R}, \sin(x+2\pi) = \sin(x)|$$

D'après les formules de première sur les angles opposés, on a :

<u>Définition</u>:

Soit f une fonction définie sur \mathbb{R} .

On dit que f est paire si $\forall x \in \mathbb{R}$, f(-x) = f(x).

On dit que f est impaire si $\forall x \in \mathbb{R}$, f(-x) = -f(x).

Par exemple, la fonction carré est paire et la fonction cube, impaire.

Propriété:

Dans un repère orthogonal,

les fonctions paires ont un graphe symétrique par rapport à l'axe des ordonnées, les fonctions paires ont un graphe symétrique par rapport à l'origine du repère.

Propriété:

La fonction cosinus est paire.

La fonction sinus est impaire.

Bilan:

Il suffit d'étudier les fonction sinus et cosinus sur $[0;\pi]$, on étendra à \mathbb{R} en utilisant la périodicité et la parité.

Ex 106, 107 et 108

Ex 106	Etudier la parité de fonctions définies par sinus et cosinus			
Ex 107	Etudier la périodicité de fonctions définies par sinus et cosinus			
Ex 108	Etudier la parité et la périodicité de la fonction valeur absolue de sinus			

2) Continuité et dérivabilité

a) Une inégalité bien utile :

$$\forall x \in \left] 0; \frac{\pi}{2} \right[\text{, on a : } 0 < \sin x \le x \le \frac{\sin x}{\cos x} \right]$$

Démonstration:

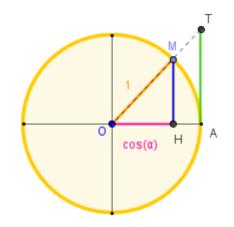
On note A_1 l'aire du triangle OAM

On note A_2 l'aire secteur angulaire \widehat{OAM}

On note A_3 l'aire du triangle OAT

$$A_{1} = \frac{OA \times MH}{2} = \frac{1 \times \sin(x)}{2} = \frac{\sin(x)}{2}$$

$$A_2 = \frac{x}{2\pi} \times \pi \times 1^2 = \frac{x}{2}$$



En utilisant Thales dans
$$OAT$$
, on obtient $\frac{OH}{OA} = \frac{MH}{AT} \Leftrightarrow \frac{1}{\cos(x)} = \frac{\sin(x)}{AT} \Leftrightarrow AT = \frac{\sin(x)}{\cos(x)}$ c'est la tangente

$$A_3 = \frac{OA \times AT}{2} = \frac{1}{2}AT = \frac{1}{2} \times \frac{\sin(x)}{\cos(x)} = \frac{\sin(x)}{2\cos(x)}$$

Comme $A_1 \le A_2 \le A_3$ on obtient, en multipliant par 2, $\sin(x) \le x \le \frac{\sin(x)}{\cos(x)}$

Comme sur $\left]0; \frac{\pi}{2}\right[, \sin(x) > 0$, on obtient l'inégalité annoncée.

b) Continuité en 0 des fonctions sinus et cosinus.

On a:
$$\forall x \in \left[0; \frac{\pi}{2}\right]$$
, $0 < \sin x \le x$ et $\lim_{x \to 0} x = 0$,

d'après le théorème des gendarmes, on a aussi : $\lim_{\substack{x\to 0\\ y>0}} \sin(x) = 0$.

Comme la fonction est impaire, on a aussi $\lim_{\substack{x\to 0\\x<0}} \sin(x) = 0$.

Comme $\sin(0) = 0$, la fonction sinus est bien continue en 0.

On sait que
$$\forall x \in \mathbb{R}$$
, $\cos(x) = 1 - 2\sin^2(\frac{x}{2})$

Comme
$$\lim_{x\to 0} \sin\left(\frac{x}{2}\right) = 0$$
, on a $\lim_{x\to 0} \cos(x) = 1$.

Comme cos(0) = 1, la fonction cosinus est continue en 0.

c) Dérivabilité en 0 des fonctions sinus et cosinus

$$\forall x \in \left[0; \frac{\pi}{2}\right[, \ 0 < \sin(x) \le x \le \frac{\sin(x)}{\cos(x)}.$$

Comme tout est strictement positif, on peut inverser : $\frac{1}{\sin(x)} \ge \frac{1}{x} \ge \frac{\cos(x)}{\sin(x)}$.

Comme $\sin(x) > 0$, on peut multiplier par $\sin(x) : 1 \ge \frac{\sin(x)}{x} \ge \cos(x)$.

Comme $\lim_{x\to 0} \cos(x) = 1$, d'après le théorème des gendarmes : $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$.

On a donc montré que $\lim_{x\to 0} \frac{\sin(x) - \sin(0)}{x-0} = 1$, c'est à dire que la fonction sinus est dérivable en 0 et que $\sin'(0) = 1$.

On sait que $\cos(x) - 1 = -2\sin^2(\frac{x}{2})$

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x} = \lim_{x \to 0} \frac{-2\sin^2\left(\frac{x}{2}\right)}{x} = \lim_{x \to 0} \left[-\sin\left(\frac{x}{2}\right) \times \frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \right] = -\lim_{x \to 0} \left[\sin\left(\frac{x}{2}\right) \right] \times \lim_{x \to 0} \left[\frac{\sin\left(\frac{x}{2}\right)}{\frac{x}{2}} \right] = 0 \times 1 = 0$$

On a donc montré que $\lim_{x\to 0} \frac{\cos(x) - \cos(0)}{x-0} = 0$, c'est à dire que la fonction sinus est dérivable en 0 et que $\cos'(0) = 0$.

d) Dérivabilité sur \mathbb{R} des fonctions sinus et cosinus :

$$\frac{\sin(x+h)-\sin(x)}{h} = \frac{\sin(x)\cos(h)+\cos(x)\sin(h)-\sin(x)}{h} = \frac{\sin(x)(1-\cos(h))+\cos(x)\sin(h)}{h}$$
$$= \sin(x)\frac{1-\cos(h)}{h} + \cos(x)\frac{\sin(h)}{h}.$$

On sait que :
$$\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$$
 et $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$

On en déduit que
$$\lim_{h\to 0} \frac{\sin(x+h) - \sin(x)}{h} = \sin(x) \times 0 + \cos(x) \times 1 = \cos(x)$$

On a donc montré que la fonction sinus est dérivable sur $\mathbb R$ et que sa dérivée est cosinus.

$$\frac{\cos(x+h)-\cos(x)}{h} = \frac{\cos(x)\cos(h)-\sin(x)\sin(h)-\cos(x)}{h} = \frac{\cos(x)(\cos(h)-1)-\sin(x)\sin(h)}{h}$$
$$=\cos(x)\frac{\cos(h)-1}{h}-\sin(x)\frac{\sin(h)}{h}.$$

On sait que :
$$\lim_{h\to 0} \frac{\cos(h)-1}{h} = 0$$
 et $\lim_{h\to 0} \frac{\sin(h)}{h} = 1$

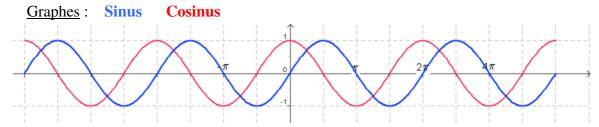
On en déduit que
$$\lim_{h\to 0} \frac{\cos(x+h) - \cos(x)}{h} = \cos(x) \times 0 - \sin(x) \times 1 = -\sin(x)$$

On a donc montré que la fonction cosinus est dérivable sur $\mathbb R$ et que sa dérivée est l'opposé du sinus.

Bilan:

Les fonctions sinus et cosinus sont dérivables sur \mathbb{R} et $\sin' = \cos \cos' = -\sin$

3) Etude sur $[-\pi;\pi]$ et sur \mathbb{R}



Les variations des fonctions sinus et cosinus sur $[-\pi;\pi]$ sont les suivantes:

х	$-\pi$		$-\frac{\pi}{2}$		$\frac{\pi}{2}$		π
$\cos x$		_	0	+	0	_	
	0				1		
$\sin(x)$		7		7		/	
			1				0

x	$-\pi$		0		π
$-\sin(x)$		+	0	_	
			1		
$\cos(x)$		7		/	
	-1				-1

Ex 112, 114, 121 et 144

Ex 112	Montrer des inégalités en étudiant les variations de fonctions définies avec des sinus et cosinus
Ex 114	Résolution d'un problème d'aire avec étude de fonction (utilisation de calcul formel)
Ex 121	Etude de la fonction tangente

Propriété:

Etant donnée une fonction f dérivable sur un intervalle I et une fonction u dérivable sur un intervalle J telle $u(x) \in I$ pour tout $x \in J$, la fonction composée f(u) est dérivable et sa dérivée est donnée par $u \times f'(u)$

Exemples: Déterminer g(x) = f(u(x)) dans les cas suivants

1)
$$f(x) = x^2$$
 $u(x) = 2x + 1$ $g(x) =$

1)
$$f(x) = 2x + 1$$
 $u(x) = x^2$ $g(x) = 0$

1)
$$f(x) = \frac{1}{x}$$
 $u(x) = 2x + 1$ $g(x) =$

1)
$$f(x) = 2x + 1$$
 $u(x) = \frac{1}{x}$ $g(x) = \frac{1}{x}$

1)
$$f(x) = 2x^2 - 3$$
 $u(x) = \cos x$ $g(x) =$

Remarque: Attention pour composer, il faut bien respecter l'ordre des fonctions.

Exemples:
$$\sin(2x) \quad \sin(x^2) \quad \sqrt{x^2 + 1} \quad \sqrt{3x - 9} \quad (2x - 1)^{10}$$

Ex 96, 97, 100, 110

Ex 96	Associer à chaque expression algébrique composée sa dérivée
Ex 97	Associer à chaque expression algébrique composée sa dérivée
Ex 100	Dériver des fonctions composées
Ex 110	Etude de $\cos(2x) - 2\cos(x)$

Propriété:

Soit f une fonction <u>continue</u> sur un intervalle $I \subset \mathbb{R}$ tel que $\forall x \in I$, $f(x) \in I$. On peut alors définir une suite (u_n) par $u_{n+1} = f(u_n)$.

Si la suite (u_n) converge, alors sa limite est une solution de l'équation f(x) = x.

Ex 134

Ex 134
